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Abstract 

Decision making in health care involves two sets of related decisions: those 

concerning appropriate service provision on the basis of existing information; and 

those concerned with whether to fund additional research to reduce the uncertainty 

relating to the decision. Information acquisition is not costless, and the allocation of 

funds to the enhancement of the decision makers’ information set, in a budget-

constrained health service, reduces the ‘pot’ of resources available for health service 

provision.  Hence, a framework is necessary to unify these decisions and ensure that 

HTA is subject to the same evaluation of efficiency as service provision. 

 

A framework is presented which addresses these two sets of decisions through the 

employment of decision analytic models and Bayesian value of information analysis, 

early and regularly within the health technology assessment process.  The model 

becomes the vehicle of health technology assessment, managing and directing 

future research effort on an iterative basis over the lifetime of the technology. This 

ensures consistency in decision making between service provision, research and 

development priorities and research methods. Fulfilling the aim of the National 

Health Service HTA  programme, that research is “produced in the most economical 

way” using “cost effective research protocols”.  

 

The proposed framework is applied to the decision concerning the appropriate 

management of female patients with symptoms of urinary tract infection, which was 

the subject of a recent NHS HTA call for proposals. A probabilistic model is 

employed to fully characterise and assess the uncertainty surrounding the decision. 

The expected value of perfect information (EVPI) is then calculated for the full model, 

for each individual management strategy and for particular model parameters.  

Research effort can then be focused on those areas where the cost of uncertainty is 

high and where additional research is potentially cost-effective. The analysis can be 

used to identify the most appropriate research protocol and to concentrate research 

upon particular parameters where more precise estimates would be of most value.   
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1. INTRODUCTION 

Decision making in health care is inevitably undertaken in a context of uncertainty concerning 

the effectiveness and resource costs of health care interventions and programmes.  Therefore, 

two related sets of decisions need to be taken: those concerning appropriate service provision 

on the basis of existing information; and those concerned with whether to fund additional 

research to reduce the uncertainty relating to the decision.  Decision analytic models have been 

suggested as a systematic means of guiding both types of decision making under conditions of 

uncertainty [1,2] and recently Claxton et al  [3] have illustrated the benefits of employing 

stochastic models incorporating Bayesian Value of Information (VOI) analysis to address these 

decisions.  

 

This paper builds on earlier work relating to iterative frameworks for HTA [4,5], the use of 

models to prioritise research [6,7] and methods for estimating the VOI from research [3,8,9], by  

suggesting that such models should be instigated with the emergence of a new health 

technology and updated regularly as more  information emerges. In this framework, each 

subsequent modelling stage is informed by the preceding model, updated to incorporate 

information acquired to date. Thus the model assumes a predominant role in the management 

of the HTA process, providing a vehicle to unify iterative decisions concerning efficient services 

to patients, the potential cost of uncertainty, the value of additional information and the most 

efficient means of acquiring that information throughout the life-cycle of the technology.  

Integrating this framework within the HTA process would improve the efficiency of a health 

technology assessment programme, ensuring that HTA is subject to the same efficiency criteria 

as service provision.  
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The benefits and practicality of the proposed approach are demonstrated through application to 

the decision concerning the management of non-pregnant women with symptoms of urinary 

tract infection (Section 3). Prior to the example application, the methods employed within the 

framework are introduced in Section 2.   

 

2. METHODOLOGICAL BACKGROUND 

Recently a Bayesian decision theoretic framework has been suggested for the evaluation of 

health technologies [3,8,9].  This approach distinguishes the decision concerning efficient 

service provision, given the existing level of information available, from the decision concerning 

whether to fund the generation of new information through further research to inform this 

decision in the future.  

 

The decision concerning efficient service provision given existing information involves identifying 

the strategy associated with the best decision payoff given no additional information (the a priori 

act [10]). Within the evaluation of health technologies, decision payoffs are expressed in terms 

of the net benefit1 associated with strategy (t) expressed in either health outcome (0) or 

monetary terms (:) [8,9,11,12]: 

 

  0t = QALY t - (Cost t * 8-1 )    [equation 1a] 

  :t =  (8 * QALYt ) - Cost t    [equation 1b] 

 

where:  8 = monetary valuation of health outcome  

                                                           
1 When only two technologies are being assessed the decision payoff can be expressed in terms of incremental net 
benefit (see Claxton  [3 ,8 ,9]) 
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The monetary valuation of health outcome (8) represents the value that society places upon the 

health outcome in monetary terms.2 This can  be considered exogenous to the model and the 

analysis presented for a range of values of 8.   

 

Given an objective to maximise health for a given budget the a priori act is identified as the 

technology/strategy that generates the maximum expected net benefit.3  Hence, only the mean 

of the distribution of net benefit is relevant for this decision [8]. The choice of a strategy other 

than that which maximises expected net benefit -  for example in order to satisfy the 

requirements of traditional statistical significance - imposes costs upon society in terms of net 

benefits forgone (see Section 3.2.3) and contradicts the objective of maximising health gain 

subject to resource constraints [8].  

 

However, the uncertainty surrounding the net benefits attainable from the strategy, represented 

by the distribution of net benefits, is critical for the decision concerning whether to fund the 

collection of further information to inform the service provision decision in the future [8]. Basic 

measures of uncertainty have previously been suggested [13,14] and employed to provide an 

indication of the worth of further information collection. However, the widespread application of 

these techniques to the HTA process is limited by their qualitative nature. The framework 

suggested in this paper takes a more formal approach to both measuring uncertainty and 

determining the worth of further data collection, employing stochastic modelling and Bayesian 

VOI analysis [8,9]. Here the decision concerning the worth of further data collection is based 

upon the expected cost of uncertainty, which in turn is determined by the extent of the 

uncertainty surrounding the a priori  decision and the consequences of this uncertainty.  The 

                                                           
2 Although when valuing information,  which is a public good, it is appropriate that 8 represents the societal willingness 
to pay for health outcome, a health service decision makers view of 8 may be influenced by the shadow price of the 
budget constraint. 
3 The maximum expected net benefit decision rule is equivalent to choosing the strategy with the largest ICER below 
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extent of the uncertainty associated with the a priori decision is measured by the error 

probability, expressed as the proportion of iterations in which uncertainty results in a decision 

other than that which maximises expected net benefit being undertaken. The associated 

consequences are measured in terms of the health benefits forgone as a result of this 

uncertainty. When these health benefits are valued according to society’s willingness-to-pay for 

health outcome (8), the approach gives a monetary value for the amount that society is willing to 

pay to reduce the uncertainty surrounding the service provision decision. This valuation can 

then be compared to the cost of gathering further information to determine whether research is 

worthwhile [9].  

 

3. APPLICATION 

The benefits and the practicality of the proposed approach are illustrated through an application 

to the decision concerning the appropriate management of non-pregnant women presenting to 

general practice with the symptoms of uncomplicated urinary tract infection.4 This provides a 

suitable example to demonstrate the value of the framework, as it is an area where existing 

information is limited and there is considerable variation amongst physicians concerning the 

most appropriate method of patient management [15,16]. In addition, the recent introduction of 

new methods of diagnosis (dipsticks) should prompt a reassessment regarding optimum service 

provision and the need for further research. Recently, the NHS health technology assessment 

programme identified the “Use of dipsticks and diagnostic algorithms in the diagnosis of urinary 

tract infection” as a research priority and called for proposals for primary research (97/14).   

                                                                                                                                                                                           
the cut-off level when all dominated strategies are excluded [43] 
4 Pregnant women; men; children and women presenting with symptoms suggesting upper urinary tract infection 
(fever; chills; nausea and loin pain) are excluded from the study due to their increased risk of underlying structural 
abnormalities and complications. 
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The aims of the analysis are: (i) to identify the appropriate patient management strategy given 

the current level of information (the a priori act); (ii) to determine whether the call for primary 

research in the area of UTI diagnosis was justified; and (iii) to provide additional information 

regarding priorities for the research process.  

 

A deterministic model is presented initially to provide a conventional decision analysis (Section 

3.1). Probabilistic analysis is then employed to illustrate the extent of the uncertainty 

surrounding the decision based upon existing information (Section 3.2). Finally, a VOI analysis 

indicates the elements of the decision where further information is potentially of value to society 

(section 3.3).  

 

3.1  A deterministic model of the management of UTI 

3.1.1. Introduction 

The symptoms associated with urinary tract infection (UTI) are common in general practice: 

dysuria and frequency have been reported in 27% and 34% of women [17]. These symptoms 

are a major cause of consultation in general practice and account for 1%-3% of all GP 

consultations [18] and 2% of all prescriptions [19]. Although the majority of cases in women are 

short-term and self-limiting, this condition does represent a considerable resource burden for 

the NHS.  

 

Early discussions with practitioners identified two main approaches for managing UTI in general 

practice.  The first is empiric antibiotic treatment on presentation of symptoms and the second 

involves the use of diagnostic tests to exclude or confirm the presence of UTI prior to antibiotic 

treatment. Two test procedures were identified for consideration within the model: the dipstick 

test, a near-patient test generating immediate results; and the laboratory test, involving an 
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Table 1: Strategies employed within the model of UTI management 

 
Strategy name Strategy description 
No treatment GPs provide general advice on relieving symptoms and inform patients 

that symptoms will resolve within seven days.  
 

Empiric treatment All individuals presenting with symptoms of UTI receive a three-day 
course of general antibiotics. 
 

Empiric treatment 
plus laboratory 
test 

The laboratory test is used to supplement empiric treatment. Whilst all 
patients provide a urine sample for testing, during the initial consultation, 
the results only affect the management of those patients with persistent 
symptoms. For these patients antibiotic sensitivity will be available at the 
second GP visit for those who tested positive, which will enable the GP to 
prescribe a course of specific antibiotics. This gives the patients with UTI 
who test positive a second chance for antibiotics to clear the infection. 
Antibiotics will not be altered on the basis of the sensitivity results until 
the second consultation.   
 

Dipstick and 
treatment 

The dipstick test is employed within the initial consultation to provide an 
indication of presence of disease and to restrict the use of antibiotics to 
those considered most likely to have UTI, as denoted by the result of the 
dipstick test. 
 

Dipstick and 
treatment plus 
laboratory test 

The laboratory test is used to supplement the dipstick test. Whilst all 
patients with a positive dipstick result provide an urine sample for further 
testing, during the initial consultation, the results only affect those 
patients with persistent symptoms. For these patients antibiotic sensitivity 
will be available at the second GP visit for those who tested positive, 
which will enable the GP to prescribe a course of specific antibiotics. This 
gives the patients with UTI who test positive a second chance for 
antibiotics to clear the infection. Antibiotics will not be altered on the 
basis of the sensitivity results until the second consultation. 
 

Laboratory test 
and wait for 
preliminary 
results 
 

All patients at the initial consultation provide a urine sample and 
treatment is determined by the initial result of this test. Hence treatment 
is delayed until the initial positive/negative result is available. 
 

Laboratory test 
and wait for 
sensitivities 

All patients at the initial consultation provide a urine sample and 
treatment is determined by the sensitivity result of this test. Hence 
treatment is delayed until the results of the sensitivity analysis are 
available. As a result, specific antibiotics are given to every confirmed 
case of UTI as a first treatment, leaving no secondary course of 
treatment for those with persistent symptoms. 
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overnight urine culture.  In consultation with practitioners, seven simple management strategies 

were generated from these two main approaches to the primary management of UTI. These 

seven strategies form the basis of the model (detailed in Table 1).  A simplified version of the 

decision tree is illustrated in Figure 1.  The assumptions that underlie the structure of the model 

are detailed within Appendix 1.  

 

3.1.2. Data 

The readily available published literature[16,20-22], including previous modelling studies 

[23,24], were reviewed to provide parameter estimates with which to populate the model. 

However, generally there was a lack of available published information, necessitating the use of 

expert opinion to estimate some parameter values.  

 

Table 2 details the base case values, range and source of information for each of the 

parameters used within the model.  

 

3.1.3. Methods 

Costs  

The model concentrates upon the differences in variable costs between strategies, because 

each option involves an identical environmental setting.  The resources involved with each 

strategy, in terms of test usage, drugs prescribed and the number of GP visits, are recorded for 

each stage of the model for both the UTI and non-UTI branches. The management strategies 

are then costed by applying unit costs (Table 2) to the expected resource volumes associated 

with each strategy.  
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Figure 1: The patient management decision 
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Tree 1 
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Tree 2 
 

Symptoms disappear

Antibiotics work

Symptoms persist

 

Tree 3 

 

Symptoms disappear

Antibiotics work

Specific Antibiotics work

Symptoms persist
Symptoms persist

Positive

Symptoms persistNegative

 

 

 



Improving the efficiency and relevance of health technology assessment 

 

10 

Table 2: Parameters of the Model 
 
 Base 

value 
Source Range 

Pathway Probabilities    
Prevalence of symptoms in target group 5% Brumfit et al, 1987 [20] 5% - 20% 
Probability of UTI given symptoms 50% Madden et al, 1996 [16] 43% - 90% 
Sensitivity of Dipstick 89% Expert opinion 88% - 99.5% 
Specificity of Dipstick 68% Expert opinion 53.3% - 82.5%
Sensitivity of Lab culture 100% Expert opinion 90% - 100% 
Specificity of Lab culture 100% Pfaller et al, 1987 [21] 90% - 100% 
Probability symptoms resolve naturally given 
UTI 

50% Brumfitt et al,1987 [20] 20% - 65% 

Probability antibiotics resolve symptoms 
given UTI 

90% Brumfitt et al,1987  [20] 81% - 95% 

Probability specific antibiotics resolve 
symptoms given UTI 

90% Madden et al, 1996  [16] 81% - 95% 

Probability of side effects due to antibiotic 
treatment 
 

10% Norrby, 1990  [22] 5% - 30% 

Resource cost     
Dipstick  £ 0.20  Madden et al, 1996  [16] £ 0.05 - £ 0.50
Antibiotics - 3 day course, general   £ 0.21  BNF, March 1998  [41] £ 0.05 - £ 0.50
Specific antibiotics - 3 day course *  £ 2.82  BNF, March 1998  [41] £ 1.00 - £ 4.50
Lab culture + sensitivity  £ 5.42  Expert opinion £ 2.50 - £ 8.50
Lab culture   £ 2.60  Expert opinion   £ 1.00 - £ 4.00
GP visit  £ 9.00  Unit costs of Health and 

Social Care, 1997  [42] 
£ 4.00 - £13.00

Procedure/Event times    
Symptom days for non-responsive UTI  7 days Expert opinion 5 - 15 days 
Period before antibiotics resolve symptoms 2 days Brumfitt et al, 1987  [20] 1 - 3 days 
Period before infection resolves naturally 3 days Brumfitt et al, 1987 [20] 1 - 4 days 
Period before basic laboratory results  known 2 days Expert opinion 1 - 3 days 
Period before laboratory sensitivity results 
known  

3 days Expert opinion 1 - 4 days 

Duration of side effects 
 

2 days Carlson et al, 1985  [23] 2 - 4 days 

Utilities    
Persistent Dysuria 0.2894 Barry et al, 1997  [24] 0.01 - 0.3 
Other side effects 0.2894 Barry et al, 1997  [24] 0.01 - 0.3 
 
* The unit cost of specific antibiotics is an average of the costs of the individual drugs which could be 
prescribed 
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Costs are estimated from an NHS perspective. The costs of over-the-counter treatments for side 

effects are excluded from the analysis as we assume they are purchased by patients privately. 

 

Health outcomes  

The expected number of symptom days suffered by patients is estimated for each strategy with 

reference to the average times taken for symptoms to resolve naturally or through antibiotics; 

the average length of time for laboratory results to be available and the additional days of 

symptoms caused by side effects to antibiotics (Table 2). QALYs associated with an episode of 

UTI are calculated for each management strategy by applying utility weights (Table 2) to 

symptom days (either due to the original cause or due to side effects of treatment)[24].  

 

Cost-effectiveness 

The expected costs and health outcomes per episode of UTI associated with each patient 

management strategy are used to determine the net benefits in monetary terms for each 

strategy for a variety of values of 8. 

 

3.1.4.  Results  

Base case scenario 

The results of the basic deterministic model suggest that the appropriate a priori act given  

values of 8 lower than £271,000 per QALY, involves empiric treatment of symptoms. Above this 

valuation of a unit of health gain (8) the basic deterministic model suggests that the empiric plus 

laboratory culture strategy is the appropriate decision. The deterministic model suggests that 

the use of diagnostic tests (dipstick or laboratory) as a primary element of the management 

strategy generates fewer net benefits than empiric treatment, regardless of 8. 
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Table 3: Results of sensitivity analysis * 
 
Parameter Range                Empiric + Lab £’000 Dipstick £’000 Dipstick + Lab £’000 

Parameter value (either lowest or highest in range)  Low  High  Low  High  Low  High  
Pathway probabilities        
Probability of UTI given symptoms 43% - 90%  £  363   £  109   -  -  -  - 
Sensitivity of Dipstick 88% - 99.5%  £  271   -  -  £  2   -  £    147  
Specificity of Dipstick 53.3% - 82.5%  £  271   £  271   -  -  -  - 
Sensitivity of Lab culture 90% - 100%  £  297   £  271   -  -  -  - 
Specificity of Lab culture 90% - 100%  £  374   £  271   -  -  -  - 
Probability symptoms resolve naturally 
given UTI 

20% - 65%  £  171  £  386   -  -  -  - 

Probability antibiotics resolve symptoms 
given UTI 

81% - 95%  £    78   £  540   -  -  £ 365   - 

Probability specific antibiotics resolve symptoms given UTI 81% - 95%  £  306  £  255  -  -  -  - 
Probability of side effects due to antibiotic treatment 5% - 30%  £  255  -  -  £  5   -  £  206  
Unit costs        
Dipstick £ 0.05 - £ 0.50  £  271  £  271   -  -  -  - 
Antibiotics - 3 day course, general  £ 0.05 - £ 0.50  £  271   £  271  -  -  -  - 
Specific antibiotics - 3 day course  £ 1.00 - £ 4.50  £  270  £  273   -  -  -  - 
Lab culture + sensitivity £ 2.50 - £ 8.50  £  225  £  320   -  -  -  - 
Lab culture  £ 1.00 - £ 4.00  £  246   £  293   -  -  -  - 
GP visit £ 4.00 - £ 13.00  £  192  £  335   -  -  -  - 
Event times        
Symptom days for non-responsive UTI  5 - 15 days  -  £    49  -  -  -  - 
Period before antibiotics resolve symptoms 1 - 3 days  £  174  £  620  -  -  -  - 
Period before infection resolves naturally 1 - 4 days  £  271  £  620  -  -  -  - 
Period before basic laboratory results  known  1 - 3 days  £  271   £  271  -  -  -  - 
Period before laboratory sensitivity results known  1 - 4 days  £  271   £  620  -  -  -  - 
Duration of side effects 2 - 4 days  £  271  -  -  £   57   -  £  177  
 
* The numbers contained within the table give the level of 8 at which each  strategy becomes optimal  assuming the lowest and highest value in the range for each  
parameter individually. For example: if the probability of side effects takes the highest value in the range then at a 8 of £5,001 the dipstick strategy generates the  
maximum expected net benefits and is optimal. 
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Sensitivity analysis 

An initial estimate of the impact of parameter uncertainty upon the results of the model is 

attained through one-way sensitivity analysis over a plausible range of values (Table 2).  

 

The results of this analysis suggest that the ‘empiric’ strategy is always the lowest cost strategy 

and that the ‘no treatment’ strategy and the strategies employing laboratory tests as the initial 

element of patient management constantly generate fewer net benefits than the empiric 

strategy.5 The results, in terms of the value of a unit of health gain (8) at which each of the 

remaining alternative strategies becomes optimal, are provided in Table 3 for the lowest and 

highest values in the range for each parameter. These results suggest that both the simple 

dipstick strategy and that complemented by the laboratory culture are sensitive to variation in 

the parameter values for the sensitivity of the dipstick, and both the duration and probability of 

side effects due to antibiotics.  

 

The deterministic model suggests that the cost-effectiveness of the ‘empiric’ strategy is fairly 

robust to parameter uncertainty although further research concerning diagnosis and 

management of UTI may be required. Basing further research upon the results of this sensitivity 

analysis would lead to a focus upon the sensitivity of the dipstick; the probability and duration of 

side effects; the probability of antibiotic resolution; and  the event times, in particular the 

average length of an episode of unresolved UTI. In addition, the results suggest that the 

laboratory strategies can be excluded from any further research protocols as irrelevant 

alternatives, on the basis of that they are dominated throughout the deterministic analysis. 

                                                           
5 Hence the empiric; no treatment and both laboratory strategies are excluded from Table 3. 
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3.2 A probabilistic model of management of UTI 

3.2.1 Introduction 

The techniques of deterministic sensitivity analysis are not well suited to handling interactions 

between parameters6 [25] and, therefore, can only give an indication of the impact of uncertainty 

upon the decision.  

 

In order to fully characterise uncertainty surrounding a decision and to value research aimed at 

reducing this uncertainty a more formal examination of the uncertainty is required.  This involves 

the identification, characterisation and incorporation of existing available (prior) information 

within the model (Section 3.2.2).  Monte Carlo simulation [26] is then used to generate a 

distribution of net benefits for each strategy within the model. The expected values  of these 

distributions are calculated and compared to identify the a priori act. The extent of the spread in 

each distribution illustrates the extent of the uncertainty concerning the net benefits that accrue 

from that strategy. A quantitative measure of the uncertainty surrounding each strategy is 

provided by the associated error probability.7 

 

The uncertainty associated with specific parameters or groups of parameters within the model 

can be ascertained through the use of conditional probabilistic sensitivity analysis [26]  which 

involves repeating the Monte Carlo simulation with distributions attached only to the variables of 

interest.  

 

                                                           
6 Joint interactions are ignored within one-way sensitivity analysis, over-estimated by analysis of extremes and difficult 
to interpret through  multi-way sensitivity analysis [25]. 
7 The error probability is the probability that the strategy does not have the maximum expected net benefit. Where 
there are more than 2 alternative technologies under consideration the error probability associated with each strategy 
is determined as the proportion of iterations within the simulation where that strategy is not optimal. See Claxton [3] 
for details on applying the approach when there are only 2 technologies under consideration. 



CHE Discussion Paper 179       

 

15

3.2.2 Characterising existing information for the UTI model 

The existing information and hence uncertainty surrounding individual parameters is embodied 

within the model through the specification of (prior) probability distributions for each model input. 

These distributions represent both the range of values that each parameter can take and the 

likelihood that the parameter assumes any specific value.  

 

Probability distributions characterising existing information were assigned to every parameter 

within the UTI model, details are given in Table 4.  The unit costs, utility and event time 

parameters were characterised as lognormal distributions8 with the mean given by the base 

case value and the standard deviation derived from the assumption that the range represented 

a 95% confidence interval. The probability parameters were characterised as triangular 

distributions with the mode given by the base-case value and the extremes of the distribution 

given by the range.9   

 

Table 4: Prior Information  
 

Parameter Distribution Specification 
   
Probabilities  Triangular Base case value = mode 

Range = extremes of distribution 
Resource costs 
 

Lognormal  Base case value = mean 
Range = 95% CI to give sd 

Event times Lognormal Base case value = mean 
Range = 95% CI to give sd  

Utilities Lognormal Base case value = mean 
Range = 95% CI to give sd 

 

                                                           
8 Lognormal distributions seemed appropriate for these parameters because they are positively skewed distributions 
which are bounded by zero  [26]. 
9 The distributions chosen for the probabilistic model were deliberately simplistic due to the lack of available published 
information and a desire not to overcomplicate the analysis. 
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3.2.3 Results of the probabilistic analysis 

Net benefits 

Monte Carlo simulation employing 10,000 iterations (using the Excel [27] add-on Crystal Ball 

[28]) was used to propagate these distributions through the model and generate a distribution of 

net benefits for each of the seven patient management strategies for a range of values of 8. For 

each value of 8 the means of the distributions are compared to identify the a priori act. Figure 2 

illustrates the distribution of net benefits (in monetary terms) for the empiric; the empiric plus 

laboratory; and the dipstick strategies for a 8 value of £10,000 per QALY. At this value of 8 the 

Empiric strategy is identified as the a priori act. The results of the probabilistic model indicate 

that ‘empiric’ treatment is the appropriate a priori act for values of 8 up to £300,000 per QALY. 

Beyond this level of 8 the appropriate a priori act is the empiric plus laboratory strategy. 

 

Figure 2: Net benefit distributions 8 = £ 10,000 per QALY 
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The vertical lines illustrate the mean of each distribution:  
Mean (Empiric strategy) =   £ 9,952 
Mean (Empiric + Lab strategy) = £ 9,944  
Mean (Dipstick) =   £ 9,951 



CHE Discussion Paper 179       

 

17

The error probability associated with empiric treatment (the optimal a priori act) at a 8 value of 

£10,000 is 0.186, whilst the error probability for the remaining strategies varies between 0.18 

(dipstick strategy) and 1 (dipstick plus lab; basic lab; and lab and wait strategies).  Failure to 

implement ‘empiric’ treatment, in favour of the no treatment strategy, on the grounds that it is 

not ‘statistically significant’ (the error probability is greater than the conventional benchmarks of 

0.05 or 0.025) imposes costs upon society, in terms of the net benefits foregone, of £14 per 

episode, or £ 93 million for the population of the UK.10 

 

Figure 3: Cost-effectiveness acceptability curve for Empiric strategy 
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Cost-effectiveness acceptability curves 

Figure 3 illustrates the uncertainty associated with the decision to adopt the empiric strategy for 

a range of 8 values, presented in the form of a cost-effectiveness acceptability curve (CEAC). 

This curve shows the probability that the empiric strategy is the optimal choice for service 

                                                           
10 An estimate of prevalence is obtained from published literature [20], estimates of the female population are 
obtained from national statistics [44], the life of the information is assumed to be 5 years and a discount rate of 6% is 
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provision (1 - error probability) over a range of values of 8 [29-31]. A CEAC can be generated 

for each strategy through calculation of the error probability associated with the strategy for a 

range of values of 8. Figure 4 illustrates the CEAC associated with each strategy within the UTI 

decision problem.  Each curve has been graphed simultaneously to produce a family of cost-

effectiveness acceptability curves.11  

 

Figure 4: A family of Cost-effectiveness Acceptability Curves 
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Decision rules 

Since the underlying objective of maximising health outcomes from limited resources implies a 

decision rule for identifying the a priori act upon the basis of maximum expected net benefit, 

rather than on the basis of maximum likelihood of being optimal,12 the outer limit of the family of 

CEACs cannot be used to identify the optimal decision for every level of 8.  Instead, a cost-

effectiveness acceptability frontier (CEAF) illustrating the uncertainty associated with the a priori 

                                                                                                                                                                                           
used. 
11 Note that the vertical summation of the curves for all strategies is 100% for every value of 8. 
12 Note that these two decision rules will be equivalent only when the distribution of  net benefits is symmetric 
(personal communication with A. Stinnett). 
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act over a range of values of 8 can be generated by graphing the error probability associated 

with the optimal strategy at each level of 8 (Figure 5). This frontier does not follow the outer 

limit of the family of CEAC in this example due to skewness in the distributions of net benefit 

(see Appendix 2 for a simple example to explain this phenomenon). 

 

Figure 5: Cost-effectiveness acceptability frontier 
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3.3 The value of information  

3.3.1 Introduction  

Information from additional research is valuable to the decision-maker because it reduces the 

uncertainty surrounding the decision concerning efficient service provision. Bayesian VOI 

analysis provides a method to measure the expected costs of decision uncertainty and, 

therefore value research aimed at reducing this uncertainty. The analysis, which follows from 

probabilistic sensitivity analysis, involves formal consideration and valuation of the 
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consequences associated with the uncertainty to provide an explicit measure of the cost 

associated with the uncertainty surrounding a decision [32-34]. In HTA, the consequences 

associated with uncertainty are the net benefits forgone when the service provision decision 

made upon the basis of existing information is incorrect.  Expressing net benefits in monetary 

terms (:) gives an explicit monetary valuation of the costs of uncertainty that can be compared 

to the cost of collecting further information to determine the worth of research [9].  As the 

monetary valuation of health outcomes may not be known with certainty, the analysis can be 

presented to the decision-maker for a range of values of 8. When the valuation of health 

outcome (8) employed within the analysis is equivalent to that employed in service provision 

decisions, the valuation of information approach ensures consistency between research 

prioritisation and service provision [9].  

 

3.3.2. Methods 

The expected value of perfect information (EVPI) is equivalent to the expected costs of 

uncertainty surrounding the service provision decision made upon the basis of existing 

information, because perfect information eliminates all uncertainty and associated costs [8,9,32-

34].  Hence, establishing the expected costs of uncertainty surrounding a decision provides a 

measure of the maximum possible payoff from research. When 8 represents a societal 

willingness to pay for health outcome, the EVPI represents the amount society is willing-to-pay 

to eliminate uncertainty associated with the decision, providing an explicit upper limit on the VOI 

obtained from further data acquisition. When compared with the cost of research, the EVPI 

provides an initial hurdle for determining whether further research is potentially cost-effective [9]. 
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Several authors [8,9,32-34] detail a parametric approach to establishing the expected value of 

perfect information. Within this paper a non-parametric approach to determining EVPI 

employing Monte Carlo simulation is employed [10,35-37]:  

 

 EVPIepisode = E[NBt**] - E[NBt*]   (equation 2a) 

 =  improvement in expected net benefit associated with   

      perfect information 

 

 where: NBt  =  net benefit associated with technology t 

 t*  =  the technology chosen by the decision-maker given no additional 

information (a priori act) 

 t**  =  the technology chosen by the decision-maker with perfect 

information (posterior act) 

 

Each iteration in the simulation represents a realisation of current uncertainty and a position of 

perfect information, for which the posterior act can be determined. The improvement in net 

benefits associated with this realisation can then be calculated.  Taking the expectation of the 

improvement values over all iterations gives the expected value of perfect information for an 

individual episode of UTI [36] (see Appendix 3 for a simple example of the calculation of 

EVPI)[37].  

 

The overall value of perfect information for a population is then determined by applying this 

opportunity loss to the overall number of episodes  that  will be affected by the information 

[3,8,9].  
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 EVPI population = EVPI episode* Σ P
p=1 [ Ip / (1+r)p ]   (equation 2b) 

 

 where: I = incidence in period 

  p =  period 

  P =  total number of periods for which information from research would   

  inform the decision 

  r =  discount rate 

 

In addition to determining the EVPI for the entire decision, the techniques can be applied to 

particular elements of the decision to direct and focus research in the same way as suggested 

for the methods employing basic uncertainty measures [13,14]. Calculating the EVPI for 

particular elements of the model involves estimating the EVPI for the full model and the EVPI for 

the remaining elements of the model, excluding those of interest (calculated as below). The 

EVPI for the elements of interest is then isolated as the difference between these two measures 

of EVPI.13 

 

To determine the EVPI for a particular strategy involves calculating the EVPI for the model when 

this strategy is excluded as an alternative. This in turn involves recalculating the improvement 

values associated with perfect information such that the strategy of interest is excluded as a 

potential posterior act (equation 2c):14 

 EVPIepisode\strategy 1 = E [NBt**\t1 - NBt*\t1]    (equation 2c) 

 

where:  NBt**\t1 = net benefit associated with technology t, excluding strategy 1 

                                                           
13 The EVPI for elements of interest is estimated  in this manner rather than by excluding those elements which are 
not of interest because this would restrict interactions between those elements.  
14 It is obvious that an EVPI can not be calculated for a strategy over the range of values of 8 for which it is the a priori 
choice.  
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To determine the EVPI for a particular parameter or group of parameters the EVPI excluding 

this (these) parameter(s) is estimated. This is achieved by repeating the Monte Carlo simulation 

assuming no uncertainty surrounding the parameter(s) of interest,15 a procedure equivalent to 

conditional probabilistic sensitivity analysis [26,38]. 

 

Table 5: Expected value of perfect information for UK population  + 
 

 £  5,000 £ 10,000 £ 15,000 
Full model £312,378 £914,626 £1,609,410 
Parameter groups    
Antibiotic £18,468 £57,786 £123,900 
Cost £31,293 £41,134 £44,169 
Dipstick Accuracy £137,319 £327,504 £530,302 
Lab Accuracy £31,842 £59,464 £79,893 
Lab Time £31,842 £59,464 £79,893 
Infection limit £14,040 £76,279 £180,320 
Natural resolution £4,780 £12,347 £31,684 
Side effects £250,513 £686,604 £1,156,102 
Utility £250,513 £686,604 £1,156,102 
Strategies    
No Treatment strategy £9,704 £58,344 £127,485 
Empiric + Lab strategy £0 £2,237 £21,271 
Dipstick strategy £265,907 £716,614 £1,181,945 
Dipstick + Lab strategy £0 £0 £1,568 
Lab + wait basic strategy £0 £0 £0 
Lab + wait sensitivities strategy £0 £0 £0 

 
These figures are based on the current UK population and gender split. The useful lifetime of the 
information is taken as 5 years. The future benefits from the information are discounted at 6% per annum. 
 

3.3.3. Results 

The results of the VOI analysis suggest that there is considerable value associated with further 

data acquisition concerning model parameters as a whole (see Table 5).  At a  8 value of 

£10,000 per QALY the EVPI is calculated to be £0.14 per episode of UTI, and £ 900,000 for the 

population as a whole.16 Figure 6 illustrates the population EVPI for the full model for a range of 

                                                           
15 The prior distributions for the parameter(s) of interest are collapsed to their expected values which is reasonable 
where the relationship is not markedly non-linear [3]. 
16 An estimate of prevalence is obtained from published literature [20], estimates of the female population are 
obtained from national statistics [44], the life of the information is assumed to be 5 years and a discount rate of 6% is 
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values of 8.  These results suggest that further data acquisition may be potentially cost-

effective. 

Figure 6: EVPI - full model 
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The EVPI for the Dipstick strategy is £0.11 per episode of UTI at a 8 value of £10,000 per 

QALY (£700,000 for the population).  At a  8 value of £50,000 per QALY , this increases to 

£0.53 per episode of UTI (£3.5 million for the population).  For the empiric plus laboratory 

strategy, the EVPI is £0.0003 per episode of UTI at a 8 value of £10,000 per QALY (£2,000 for 

the population), and £0.22 per episode of UTI at a 8 value of £50,000 per QALY (£1.5 million 

for the population). Figure 7 illustrates the EVPI associated with each strategy over a range of 

values of 8.  

Figure 7: EVPI for strategies 

                                                                                                                                                                                           
used. 
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*These lie along the x axis as they have EVPI of zero. 
Note: there is no EVPI associated with a strategy over the range of 8 values for which the strategy is 
identified as the a priori act. 
 

 
The analysis for groups of parameters illustrates that, at a 8 value of £10,000 per QALY, the 

EVPI for side effects is £0.10 per episode of UTI as is the EVPI for utilities (£700,000 for the 

population), whilst that for unit costs is £0.006 per episode (£41,000 for the population) and for 

the probability of natural resolution the EVPI is only £0.002 per episode (£12,000 for the 

population).  Figure 8 illustrates the EVPI for various groups of parameters associated with 8 

values of £5k; £10k and £15k per QALY.  
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Figure 8: EVPI for parameter groups 
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4. DISCUSSION 

4.1  Unifying decisions about service provision and about research  

It is clear that resources expended for providing health services cannot be used for research to 

generate additional information, and vice versa.  It is essential, therefore, that a framework is 

developed and adopted in which the economic appraisal of service provision is coupled with 

assessment of the cost-effectiveness of future research.  This paper argues that iterative 

decision modelling provides such a framework.  The value of this framework has been illustrated 

using a contemporary decision problem  – the management of non-pregnant women presenting 

to general practice with the symptoms of uncomplicated UTI. 

 

As regards the optimal treatment based on current information, the results of the stochastic 

model identify the ‘empiric’ strategy as the optimal decision for valuation of health benefits (8) 

below £ 300,000 per QALY, and the empiric plus laboratory strategy for values of 8 above £ 
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300,000 per QALY.17 

 

Figure 9: EVPI vs. Cost-effectiveness Acceptability Frontier 
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The secondary decision problem is whether research to provide further information to inform the 

service provision decision in the future is worthwhile.  The stochastic model measures the 

uncertainty associated with choosing the ‘empiric’ strategy as varying between 1% - 66% as the 

valuation of health benefit increases to £ 300,000. The uncertainty associated with the empiric 

plus laboratory strategy falls from 65% as the value of health benefit increases from £ 300,000 

(Figure 5).  The VOI analysis generates explicit valuations that can be compared to the cost of 

further investigation to determine whether additional research is potentially worthwhile.  Figure 9 

illustrates the relationship between the level of uncertainty (as represented by the cost-

effectiveness frontier) and the expected value of perfect information. 

                                                           
17 The deterministic model suggests that the empiric strategy is optimal up to a 8 value of £271,256. The difference is 
due to some of the parameters having  non-symmetric probability distributions so that the mean in the stochastic 
model is not equal to the base case value within the deterministic model. 
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The decision over which strategies/technologies to include within proposals for further research 

can be guided by the expected value of perfect information about individual strategies. The 

EVPI for each strategy is linked with the probability that the strategy is optimal and therefore is 

related to the cost-effectiveness acceptability curve (Figure 4).  The fact that the dipstick 

strategy is associated with the second highest probability of being optimal for  a considerable 

range of values of 8 indicates that there will be a large EVPI associated with this strategy. This 

illustrates that whilst the dipstick strategy is never optimal within the analysis it may be worth 

collecting further information about the strategy. Therefore it does not necessarily follow that 

there will be no value associated with acquiring more information about a dominated strategy. 

Indeed this example demonstrates that the concept of dominance in a deterministic analysis can 

not be used to exclude an alternative from further research. In fact, it is possible that the value 

of information surrounding a non dominated but non optimal strategy will be lower than a 

dominated alternative. In these circumstances using the concept of dominance to identify 

‘relevant’ alternatives for further evaluation will be very misleading [39]. 

 

Research can be focused upon the particular areas of the decision for which a reduction in 

uncertainty via further information is of most value by calculating the expected value of perfect 

information for individual parameters and groups of parameters. The EVPI analysis for particular 

parameters suggests that further information concerning utilities and side effects provide most 

value, whilst information about prevalence of UTI given symptoms, probability of natural 

resolution of symptoms and unit costs provide the least value. 

 

It is of interest that the value of  information associated with the accuracy of the laboratory test 

is higher than that for the unit costs. This result contradicts the one-way sensitivity analysis that 

found no impact for these parameters, due mainly to the domination of the strategies involving 
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laboratory tests.  Hence a standard approach to handling uncertainty would have missed the 

importance of these parameters. This discrepancy within the results is due to the fact that one-

way sensitivity analysis investigates the impact of parameter uncertainty on strategies 

individually, whilst the VOI analysis investigates the cost of uncertainty within the model. The 

laboratory test is included within four of the seven patient management strategies and hence 

uncertainty surrounding the accuracy of this test will have a large associated cost.  

 

The value of perfect information provides a necessary, but not sufficient, condition for the worth 

of further information. To determine the value of specific research, it is necessary to value the 

reduction in uncertainty that is actually achievable from the research, in terms of the reduction in 

the expected costs of uncertainty. When measured in monetary terms this gives society’s 

willingness-to-pay for the specific research proposal,  which is considered worthwhile where the 

valuation exceeds the cost.  The techniques can also be employed to design technically efficient 

research proposals in terms of optimal sample size and allocation [3,8] thus improving the 

efficiency in HTA. 

 

4.2  Using iterative decision analysis in research commissioning 

Where early stage modelling is not undertaken, implicit judgements must be made about which 

parameters are important for the purposes of HTA, and the extent of evidence required.  As a 

result, proposals for further data acquisition may either lack focus, leading to an unnecessarily 

large information requirement, or fail to provide information about key parameters for estimation.  

This can result in inefficient and potentially uninformative programmes of data acquisition.  

 
As an illustration, the results of the UTI model presented here can be used to assess whether 

the call for primary research in the area of UTI diagnosis from the NHS HTA programme was 

justified.   It is not clear whether a formal systematic review was undertaken prior to the call for 
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primary research - apparently none was formally commissioned.  The early stage model, 

presented here, used available clinical evidence and clinical opinion to estimate parameters. A 

systematic review of published literature may reduce the uncertainty in the model in general, 

and of specific parameters, markedly.  If such a review  were commissioned, this model would 

provide an indication of the parameters on which it should focus, with the parameters relating to 

utilities and side effects most highly valued.  Indeed, the model could provide a valuable insight 

into the most efficient search strategy for each parameter.  An economic rationale can only be 

established for devoting additional resources to searching less accessible literature (e.g. grey 

and foreign language literature) with reference to the VOI associated with a given parameter 

and the probability that a study is going to be identified which significantly alters parameter 

estimates based on prior information. 

 

If we assume that a systematic review had been undertaken and no additional information 

identified, further primary research would seem justified on the basis of the model’s results.  

Although the NHS HTA call does not presume that a randomised trial would be the preferred 

design, this may be the preferred form of data acquisition for some parameters, in particular the 

effectiveness of antibiotics. The EVPI about antibiotics is £ 58,000, given a 8 value of £10,000 

per QALY, and since a trial is likely to cost in excess of this it is unlikely that it will be 

worthwhile. Although we have not presented data on the optimal sample size of these trials, the 

model and VOI analysis could have been employed for that purpose [8 ,9 ,40], providing crucial 

information to potential trialists.   

 

However, the parameters for which the value of additional information is greatest (utilities and 

side effects) would not require measurement in expensive trials, given that the problem of 

selection bias is not expected to be significant in the estimation of these parameters. Split 
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sample designs would be appropriate to provide further data on dipstick and laboratory test 

accuracy and non-experimental designs would be appropriate for the probability of resolution of 

UTI without intervention.  Given a limited budget for the NHS HTA programme, early stage 

modelling would have indicated that a trial was not the most urgent research design in this area 

and that further information on the most important parameters may have been generated more 

efficiently using non-experimental designs. 

 

5.  Conclusions 

Information acquisition is not costless, and the allocation of funds to the enhancement of the 

decision makers’ information set, in a budget-constrained health service, reduces the ‘pot’ of 

resources available for health service provision.  Hence, it is necessary to ensure that the 

process of HTA is subject to the same evaluation of efficiency as is service provision.  This 

paper argues that employing decision analytic models, early and on an iterative basis in HTA, to 

evaluate the efficiency of health care technologies, will assist in the management of health 

services R&D and help to ensure that both service provision and R&D provide good value for 

money.   The approach has been illustrated using an application to the decision problem of the 

management of UTI, which shows that these methods are practical and generate valuable 

information that is unlikely otherwise to be available. 
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Appendix 1: Simplifying assumptions used within the UTI model 
 
• A proportion of the women who present with symptoms of UTI in general practice will 

have other disorders. A lack of quantitative information of other possible causes of 

symptoms in this group 1 led us to treat all non-UTI cases identically in the model. 

• We make the assumption that those with non-UTI will not benefit from any of the 

strategies considered, and the only possible health outcome for these patients is that 

symptoms will persist, as illustrated in Figure 1. However, as these patients are not 

immediately identifiable the resources used in the management of their symptoms are 

included within the analysis of each strategy.  

• Uncomplicated UTI tends to be a self-limiting condition, with 50% of cases resolving 

naturally after 3 days [20] and the remainder get better after a week on average (base 

case). 

• Where no treatment is given to patients with UTI, either as a deliberate strategy or as the 

result of an incorrect test result, symptoms are assumed to either disappear after 3 days 

or to persist for 7 days (sub-tree 1). 

• Where UTI is the cause of symptoms, antibiotics may resolve symptoms after 2 days from 

the start of the course [20], otherwise the patient experiences the same outcomes as 

apply where antibiotics are not used.  

• It is assumed that patients given antibiotics fully comply with the course of treatment.  

• When used, test results dictate the subsequent management of the patient. Antibiotics 

(and possibly a confirmatory laboratory culture) follow a positive result and no further 

treatment follows a negative one.  When laboratory tests are undertaken an initial 

positive/negative result can confirm the presence/absence of UTI and further analysis of 

positive results provides details of bacterial sensitivities that can direct prescribing. Where 

available, this information is employed to manage patients whose symptoms persist  (sub-

tree 3). 

• 10% of those receiving antibiotics are expected to experience side effects as a result [22], 

which prolong the period of symptoms by an extra 2 days [23]. 

• We assume that there is no worsening of symptoms or progression to pyelonephritis due 

to withholding or delaying antibiotic treatment within this patient population. 

• Patients are assumed to return to the GP where symptoms persist, and the resources 

associated with these visits are included within the model. However, as the model deals 

with the primary management of uncomplicated UTI in women any subsequent 
                                                           
1 The data that is available relates to a specific group of patients consulting via a university health centre and is 
not considered representative of the population under study here [45]. 
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investigations in those whose symptoms persist following the completion of the 

management strategy are considered to be outside the scope of the model  and are 

excluded from the analysis. 
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Appendix 2: Expected net benefits, error probabilities and skewed distributions 
 

The following table gives 3 iterations from a Monte Carlo simulation involving 2 treatments (A 

and B).   

 
    Net benefits in monetary terms  
 

 Treatment A Treatment B 

Iteration 1 15 9 

Iteration 2 11 12 

Iteration 3 13 15 

Expected NB 13 12 

 
Given the objective to maximise health subject to a budget constraint the a priori decision is 

identified as the treatment with the maximum expected net benefit. Therefore the a priori 

decision is to undertake Treatment A. 

 

However, the distributions of net benefits are skewed. This results in a situation where the 

error probability associated with the choice of Treatment A is 66%.  

 

This simple example illustrates that when there are skewed distributions of net benefit the 

treatment/strategy/technology with the maximum expected net benefit will not necessarily 

have the minimum error probability (maximum probability of being optimal).  When using 

cost-effectiveness acceptability curves this translates to a position where the uppermost 

curve does not necessarily relate to the optimal strategy.  
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Appendix 3: Calculating the EVPI  
 

The following table gives 3 iterations from a Monte Carlo simulation involving 2 treatments (A 

and B).   

 

    Net benefits in monetary terms  
 

 Treatment A Treatment B Perfect Information 

Iteration 1 15 9 15 

Iteration 2 11 12 12 

Iteration 3 13 15 15 

Expected NB 13 12 14 

 
Given current information the a priori decision is to choose Treatment A which generates an 

expected net benefit of 13.  

 

However, given perfect information at each iteration Treatment A would only be chosen for 

the first iteration, with Treatment B chosen in each of  the other two iterations. Hence, 

perfect information generates an expected net benefit of 14.  

 

The difference between the expected net benefit given perfect information and that given 

current information represents the expected improvement associated with the perfect 

information. Hence it represents the value in decision payoff terms (net benefit) of the perfect 

information.  

 
EVPI  = E(NB given perfect information) - E(NB given current information) 

 = 14 - 13 

 = 1 


